Skip to main content Skip to main navigation menu Skip to site footer
Articles
Published: 2024-06-30

Rodent reservoirs: unraveling spectrum of zoonotic and pathogenic bacteria

College of Veterinary Medicine and Biomedical Sciences, Sokoine University of Agriculture, P. O. Box 3021, Chuo Kikuu, Morogoro, Tanzania; African Centre of Excellence for Innovative Rodent Pest Management and Biosensor Technology Development (ACE IRPM and BTD) of the Sokoine University of Agriculture, Morogoro, Tanzania
College of Veterinary Medicine and Biomedical Sciences, Sokoine University of Agriculture, P. O. Box 3021, Chuo Kikuu, Morogoro, Tanzania
Kilimanjaro Clinical Research Institute, Kilimanjaro, Tanzania
College of Veterinary Medicine and Biomedical Sciences, Sokoine University of Agriculture, P. O. Box 3021, Chuo Kikuu, Morogoro, Tanzania
Zoonoses, Rodents, 16S rRNA metagenomics, Families, Bacteria, Tanzania

Abstract

Background: Zoonotic diseases are the major public health threat, with over 70% originating from wildlife. Rodents, while beneficial to the environment, transmit many zoonotic diseases such as hemorrhagic fevers, plague, tularemia, and leptospirosis, mainly due to increased agriculture and land use changes. Understanding rodent-borne pathogens is essential for effective intervention. Therefore, this study aimed to identify pathogenic and zoonotic bacteria in rodents and identify rodent species in the study area.

Methods: A total of 116 rodents achieved samples (101 oral-pharyngeal and 15 rectal swabs) collected from Kibondo, Uvinza and Kyerwa were used in this study. Total RNA (Ribonucleic Acid) was extracted from each swab sample and then pooled based on rodent species, location and swab types to make twelve pools. A portion of pooled swabs were polyadenylated and used for metagenomics sequence libraries preparation. A 16S rRNA (ribosomal Ribonucleic Acid) metagenomics sequencing was performed on 12 pools by using MinIon platform in order to identify microbial diversity.

Results: A total of 13 different microbial communities includinng bacteria were identified; where, 15 families of potentially pathogenic, zoonotic and bacteria of unknown zoonotic potential were also identified. These families included Mycobacteriacea, Helicobacteriacea, Enterobacteriacea, Vibrionacea, Staphylococcaceae, Nocardiaceae, Bacillaceae, Pasteurellaceae, Streptococcaceae, Campylobacteraceae, Leptospiraceae, Brachyspiraceae, Moraxellaceae, Enterococcaea, Flavobacteriacea. Potentially zoonotic pathogenic bacteria including Mycobacterium tuberculosis, Vibrio cholerae, Helicobacter pylori and Vibrio parahaemolyticus are reported in this study.

Conclusion: This study identifies several bacteria of public and veterinary importance, highlighting the possibility of increased risk of human infection and risk of cross-transmission between rodents, humans, and animals given the proximity between rodents, humans and animals. While no concrete evidence of rodent-to-human transmission was found, we hypothesize that rodents are a potential infection source, especially in resource-poor areas with close rodent-human contact.



Downloads

Download data is not yet available.

References

  1. References
  2. Akhtar N, Hayee S, Idnan M, Nawaz F, BiBi S. Rodents Human Zoonotic Pathogens Transmission: Historical Background and Future Prospects [Internet]. Rodents and Their Role in Ecology, Medicine and Agriculture. IntechOpen; 2023. Available from: http://dx.doi.org/10.5772/intechopen.1001283.
  3. Jones KE, Patel NG, Levy MA, Storeygard A, Balk D, Gittleman JL, Daszak P. Global trends in emerging infectious diseases. Nature. 2008 Feb 21;451(7181):990-3. doi: 10.1038/nature06536.
  4. Cascio A, Bosilkovski M, Rodriguez-Morales AJ, Pappas G. The socio-ecology of zoonotic infections. Clin Microbiol Infect. 2011 Mar;17(3):336-42. doi: 10.1111/j.1469-0691.2010.03451.x.
  5. Rabiee MH, Mahmoudi A, Siahsarvie R, Kryštufek B, Mostafavi E. Rodent-borne diseases and their public health importance in Iran. PLoS Negl Trop Dis. 2018 Apr 19;12(4):e0006256. doi: 10.1371/journal.pntd.0006256.
  6. Zhang K, Fu Y, Li J, Zhang L. Public health and ecological significance of rodents in Cryptosporidium infections. One Health. 2021 Dec 16;14:100364. doi: 10.1016/j.onehlt.2021.100364.
  7. Woolhouse MEJ, Dye C, Taylor LH, Latham SM, woolhouse MEJ. Risk factors for human disease emergence. Philos Trans R Soc Lond B Biol Sci. 2001 Jul 29;356(1411):983–9.
  8. Boey K, Shiokawa K, Rajeev S. Leptospira infection in rats: A literature review of global prevalence and distribution. PLoS Negl Trop Dis. 2019 Aug 9;13(8):e0007499. doi: 10.1371/journal.pntd.0007499.
  9. Issae AR, Katakweba AS, Kicheleri RP, Chengula AA, van Zwetselaar M, Kasanga CJ. Exploring Pathogenic and Zoonotic Bacteria from Wild Rodents, Dogs, and Humans of the Ngorongoro District in Tanzania Using Metagenomics Next-Generation Sequencing. Zoonotic Diseases. 2023; 3(3):226-242. https://doi.org/10.3390/zoonoticdis3030019.
  10. Makundi RH, Massawe AW, Mulungu LS. Rodent population fluctuations in three ecologically heterogeneous locations in north-east, central and south-west Tanzania. Belgian Journal of Zoology. 2005; 135:159-165.
  11. Wobeser G, Campbell GD, Dallaire A, McBurney S. Tularemia, plague, yersiniosis, and Tyzzer's disease in wild rodents and lagomorphs in Canada: a review. Can Vet J. 2009 Dec;50(12):1251-6.
  12. Islam MM, Farag E, Mahmoudi A, Hassan MM, Mostafavi E, Enan KA, Al-Romaihi H, Atta M, El Hussein ARM, Mkhize-Kwitshana Z. Rodent-Related Zoonotic Pathogens at the Human-Animal-Environment Interface in Qatar: A Systematic Review and Meta-Analysis. Int J Environ Res Public Health. 2021 May 31;18(11):5928. doi: 10.3390/ijerph18115928.
  13. Borremans B, Leirs H, Gryseels S, Günther S, Makundi R, de Bellocq JG. Presence of Mopeia virus, an African arenavirus, related to biotope and individual rodent host characteristics: implications for virus transmission. Vector Borne Zoonotic Dis. 2011 Aug;11(8):1125-31. doi: 10.1089/vbz.2010.0010.
  14. Fulhorst CF, Milazzo ML, Armstrong LR, Childs JE, Rollin PE, Khabbaz R, Peters CJ, Ksiazek TG. Hantavirus and arenavirus antibodies in persons with occupational rodent exposure. Emerg Infect Dis. 2007 Apr;13(4):532-8. doi: 10.3201/eid1304.061509.
  15. Phan TG, Kapusinszky B, Wang C, Rose RK, Lipton HL, Delwart EL. The fecal viral flora of wild rodents. PLoS Pathog. 2011 Sep;7(9):e1002218. doi: 10.1371/journal.ppat.1002218.
  16. van Soolingen D, van der Zanden AG, de Haas PE, Noordhoek GT, Kiers A, Foudraine NA, Portaels F, Kolk AH, Kremer K, van Embden JD. Diagnosis of Mycobacterium microti infections among humans by using novel genetic markers. J Clin Microbiol. 1998 Jul;36(7):1840-5. doi: 10.1128/JCM.36.7.1840-1845.1998.
  17. Ecke F, Han BA, Hörnfeldt B, Khalil H, Magnusson M, Singh NJ, et al. Population fluctuations and synanthropy explain transmission risk in rodent-borne zoonoses. Nat Commun. 2022 Dec 7;13(1):7532. Doi:10.1038/s41467-022-35273-7
  18. García-Peña GE, Rubio AV, Mendoza H, Fernández M, Milholland MT, Aguirre AA, et al. Land-use change and rodent-borne diseases: hazards on the shared socioeconomic pathways. Philos Trans R Soc B Biol Sci. 2021 Sep 20;376(1837):20200362. https://doi.org/10.1098/rstb.2020.0362.
  19. Maaz D, Krücken J, Blümke J, Richter D, McKay-Demeler J, Matuschka FR, et al. Factors associated with diversity, quantity and zoonotic potential of ectoparasites on urban mice and voles. PLOS ONE. 2018 Jun 25;13(6):e0199385.
  20. Kurpiers LA, Schulte-Herbrüggen B, Ejotre I, Reeder DM. Bushmeat and Emerging Infectious Diseases: Lessons from Africa. Problematic Wildlife. 2015 Sep 21:507–51. doi: 10.1007/978-3-319-22246-2_24.
  21. Suu-Ire R, Obodai E, Bel-Nono SO, Ampofo WK, Mazet JAK, Goldstein T, et al. Surveillance for potentially zoonotic viruses in rodent and bat populations and behavioral risk in an agricultural settlement in Ghana. One Health Outlook. 2022 Mar 8;4:6.
  22. .Horefti E. The Importance of the One Health Concept in Combating Zoonoses. Pathogens. 2023 Aug;12(8):977.
  23. Miller RR, Montoya V, Gardy JL, Patrick DM, Tang P. Metagenomics for pathogen detection in public health. Genome Med. 2013 Sep 20;5(9):81. doi: 10.1186/gm485.
  24. Zhang L, Chen F, Zeng Z, Xu M, Sun F, Yang L, et al. Advances in Metagenomics and Its Application in Environmental Microorganisms. Front Microbiol [Internet]. 2021 Dec 17 [cited 2024 Jul 2];12. Available from: https://www.frontiersin.org/journals/microbiology/articles/10.3389/fmicb.2021.766364/full
  25. Greninger AL, Naccache SN, Federman S, Yu G, Mbala P, Bres V, Stryke D, Bouquet J, Somasekar S, Linnen JM, Dodd R, Mulembakani P, Schneider BS, Muyembe-Tamfum JJ, Stramer SL, Chiu CY. Rapid metagenomic identification of viral pathogens in clinical samples by real-time nanopore sequencing analysis. Genome Med. 2015 Sep 29;7:99. doi: 10.1186/s13073-015-0220-9.
  26. Kim C, Pongpanich M, Porntaveetus T. Unraveling comprehensive review. J Transl Med. 2024 Jan 28;22(1):111
  27. Marić J, Križanović K, Riondet S, Nagarajan N, Šikić M. Comparative analysis of metagenomic classifiers for long-read sequencing datasets. BMC Bioinformatics. 2024 Jan 11;25(1):15.
  28. Zhang ZF, Liu LR, Pan YP, Pan J, Li M. Long-read assembled metagenomic approaches improve our understanding on metabolic potentials of microbial community in mangrove sediments. Microbiome. 2023 Aug 23;11(1):188.
  29. Joyon M. Transcriptomic analysis on freshwater mussels for identification of potential biomarkers to monitor water ecosystems. 2021.
  30. Menzel P, Ng KL, Krogh A. Fast and sensitive taxonomic classification for metagenomics with Kaiju. Nat Commun. 2016 Apr 13;7:11257. doi: 10.1038/ncomms11257.
  31. Li H, Li H. Animal Models of Tuberculosis. In: Christodoulides M, editor. Vaccines for Neglected Pathogens: Strategies, Achievements and Challenges: Focus on Leprosy, Leishmaniasis, Melioidosis and Tuberculosis [Internet]. Cham: Springer International Publishing; 2023: 139–70. Available from: https://doi.org/10.1007/978-3-031-24355-4_7.
  32. Singh AK, Gupta UD. Animal models of tuberculosis: Lesson learnt. Indian J Med Res. 2018 May;147(5):456-463. doi: 10.4103/ijmr.IJMR_554_18.
  33. Weetjens BJ, Mgode GF, Machang'u RS, Kazwala R, Mfinanga G, Lwilla F, Cox C, Jubitana M, Kanyagha H, Mtandu R, Kahwa A, Mwessongo J, Makingi G, Mfaume S, Van Steenberge J, Beyene NW, Billet M, Verhagen R. African pouched rats for the detection of pulmonary tuberculosis in sputum samples. Int J Tuberc Lung Dis. 2009 Jun;13(6):737-43.
  34. Behr MA, Gagneux S. 24 - The Rise and Fall of the Mycobacterium tuberculosis Complex. In: Tibayrenc M, editor. Genetics and Evolution of Infectious Disease [Internet]. London: Elsevier; 2011 [cited 2023 Sep 18]. p. 651–67. Available from: https://www.sciencedirect.com/science/article/pii/B9780123848901000248
  35. Cavanagh R, Begon M, Bennett M, Ergon T, Graham IM, De Haas PE, Hart CA, Koedam M, Kremer K, Lambin X, Roholl P, Soolingen Dv Dv. Mycobacterium microti infection (vole tuberculosis) in wild rodent populations. J Clin Microbiol. 2002 Sep;40(9):3281-5. doi: 10.1128/JCM.40.9.3281-3285.2002.
  36. Wells AQ, Oxon DM. Tuberculosis in Wild Voles. Lancet [Internet]. Available from: https://www.cabdirect.org/cabdirect/abstract/19372701402
  37. van Duynhoven YT, de Jonge R. Transmission of Helicobacter pylori: a role for food? Bull World Health Organ. 2001;79(5):455-60.
  38. WHO. Cholera [Internet]. 2022 . Available from: https://www.who.int/news-room/fact-sheets/detail/cholera
  39. Gavilan RG, Zamudio ML, Martinez-Urtaza J. Molecular epidemiology and genetic variation of pathogenic Vibrio parahaemolyticus in Peru. PLoS Negl Trop Dis. 2013 May 16;7(5):e2210. doi: 10.1371/journal.pntd.0002210.
  40. Zhang S. Dental caries and vaccination strategy against the major cariogenic pathogen, Streptococcus mutans. Curr Pharm Biotechnol. 2013;14(11):960-6. doi: 10.2174/1389201014666131226144339.
  41. Chu J, Yarrarapu SNS, Vaqar S, Durrani MI. Psittacosis. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2023 [cited 2023 Oct 10]. Available from: http://www.ncbi.nlm.nih.gov/books/NBK538305/
  42. Igwaran A, Okoh AI. Human campylobacteriosis: A public health concern of global importance. Heliyon. 2019 Nov 14;5(11):e02814. doi: 10.1016/j.heliyon.2019.e02814.
  43. Brueggemann AB, van Rensburg MJJ, Shaw D, McCarthy ND, Jolley KA, Maiden MCJ, et al. Changes in the incidence of invasive disease due to Streptococcus pneumoniae, Haemophilus influenzae, and Neisseria meningitidis during the COVID-19 pandemic in 26 countries and territories in the Invasive Respiratory Infection Surveillance Initiative: a prospective analysis of surveillance data. Lancet Digit Health. 2021 Jun;3(6):e360-e370. doi: 10.1016/S2589-7500(21)00077-7. Erratum in: Lancet Digit Health. 2021 Jul;3(7):e413. doi: 10.1016/S2589-7500(21)00103-5.
  44. Gratz G. The burden of rodent-borne diseases in Africa south of the Sahara. Belg J Zool. 1997;127(Suppl 1):71–84.


How to Cite

1.
Mpinga A, Kazwala R, Kumburu H, Mathew C. Rodent reservoirs: unraveling spectrum of zoonotic and pathogenic bacteria. J Ideas Health [Internet]. 2024 Jun. 30 [cited 2025 Feb. 17];7(3):1061-7. Available from: https://jidhealth.com/index.php/jidhealth/article/view/345