Skip to main content Skip to main navigation menu Skip to site footer
Articles
Published: 2024-08-31

Seroprevalence and risk factors for brucellosis in cattle and rodents in Kilosa district, Morogoro, Tanzania

Department of Veterinary Medicine and Public Health, College of Veterinary Medicine and Biomedical Science, Sokoine University of Agriculture, P.O. Box 3019, Morogoro, Tanzania
The Institute of Pest Management, Sokoine University of Agriculture, P.O. Box 3110 Morogoro, Tanzania
Department of Veterinary Anatomy and Pathology, College of Veterinary Medicine and Biomedical Science, Sokoine University of Agriculture, P.O. Box 3016, Morogoro, Tanzania
Brucellosis Seroprevalence, Cattle, Rodents, Zoonosis, Risk Factors, Tanzania

Abstract

Background: Brucellosis is a global zoonosis caused by gram-negative bacteria that affects a diverse array of hosts including humans, domestic animals as well as wild animals such as cattle (B. abortus), goats, and sheep (B. melitensis), pigs (B. suis), and rodents (B. neotomae), and results in financial setbacks in the livestock industry. This study aimed to identify risk factors and estimate the seroprevalence of brucellosis in cattle and rodents in Kilosa district, Tanzania.

Methods: A cross-sectional study was conducted from January 2023 to March 2023, cattle were randomly selected and rodents were trapped using Sherman, wire cages, and havahart traps. Blood samples were collected from the jugular vein and heart of the cattle and rodents, respectively. Sera were harvested from the collected blood and stored at – 20 ºC. All the sera were screened for brucella antibodies using the Rose Bengal Plate Test (RBPT) and confirmed by competitive Enzyme Linked Immuno Sorbent Assay (c-ELISA). The risk factors were captured using a structured questionnaire and analyzed by computing the Chi-square test and generalized linear model.

Results: The seroprevalence of brucellosis was found to be 5.31% in cattle (95% CI: 0.0286-0.089) and 0.72% in rodents (95% CI: 0.0002-0.0397). A significant association was observed between grazing style and brucellosis seropositivity in cattle, with cattle that grazed together with sheep and goats having significantly higher odds of seropositivity (OR=6.5; 95% CI: 1.74-42.17, **p < 0.01).

Conclusion: The detection of Brucella antibodies in both species indicates ongoing transmission and potential risk to public health. Our findings suggest that rodents may serve as reservoirs of brucellosis, contributing to its persistence and spread. Further research is essential to characterize the specific brucella species circulating among cattle and rodents and to understand the dynamics of interspecies transmission.



Downloads

Download data is not yet available.

References

  1. Lai S, Chen Q, Li Z. Human brucellosis: An ongoing global health challenge. China CDC Wkly. 2021;3(6):120–3. doi:10.46234/ccdcw2021.035.
  2. Pastre T, Boutrou M, Martinez AY, Melzani A, Peugny S, Michaud C, et al. Novel species of Brucella causing. Emerg Infect Dis. 2023;29(2):333–40. doi:10.3201/eid2902.221492.
  3. Franc KA, Krecek RC, Häsler BN, Arenas-Gamboa AM. Brucellosis remains a neglected disease in the developing world: A call for interdisciplinary action. BMC Public Health. 2018;18(1):1–9. doi:10.1186/s12889-018-5279-6.
  4. Moreno E. Retrospective and prospective perspectives on zoonotic brucellosis. Front Microbiol. 2014;5(MAY):1–18. doi:10.3389/fmicb.2014.00213.
  5. Tikare NV, Mantur BG, Bidari LH. Brucellar meningitis in an infant - Evidence for human breast milk transmission. J Trop Pediatr. 2008;54(4):272–4. doi:10.1093/tropej/fmn041.
  6. Tuon FF, Gondolfo RB, Cerchiari N. Human-to-human transmission of Brucella – a systematic review. Trop Med Int Health. 2017;22(5):539–46. doi:10.1111/tmi.12856.
  7. Pal M, Gizaw F, Fekadu G, Alemayehu G, Kandi V. Public health and economic importance of bovine brucellosis: An overview. Am J Epidemiol Infect Dis. 2017;5(2):27–34.
  8. O’Callaghan D. Human brucellosis: Recent advances and future challenges. Infect Dis Poverty. 2020;9(1):1–2. doi:10.1186/s40249-020-00748-5.
  9. Kiambi SG. Prevalence and factors associated with brucellosis among febrile patients attending Ijara District Hospital. 2012;96. Available from: http://ir.jkuat.ac.ke/bitstream/handle/123456789/1415/Kiambi,%20Stella%20Gaichugi%20–Msc%20Applied%20Epidemiology%20-2012.pdf?sequence=1.
  10. Mengele IJ, Akoko JM, Shirima G, Bwatota SF, Motto SK, Hernandez-Castro LE, et al. Epidemiology of Brucella species circulating in smallholder dairy cattle in Tanzania. 2024.
  11. Alonso S, Dohoo I, Lindahl J, Verdugo C, Akuku I, Grace D. Prevalence of tuberculosis, brucellosis and trypanosomiasis in cattle in Tanzania: A systematic review and meta-analysis. Anim Health Res Rev. 2016;17(1):16–27. doi:10.1017/S1466252316000022.
  12. Fyumagwa RD, Wambura PN, Mellau LSB, Hoare R. Seroprevalence of Brucella abortus in buffaloes and wildebeests in the Serengeti ecosystem: A threat to humans and domestic ruminants. Tanzania Vet J. 2010;26(2).
  13. Assenga JA, Matemba LE, Muller SK, Malakalinga JJ, Kazwala RR. Epidemiology of Brucella infection in the human, livestock and wildlife interface in the Katavi-Rukwa ecosystem, Tanzania. BMC Vet Res. 2015;11(1):1–11. doi:10.1186/s12917-015-0504-8.
  14. Zheludkov MM, Tsirelson LE. Reservoirs of Brucella infection in nature. Biol Bull. 2010;37(7):709–15. doi:10.1134/S1062359010070121.
  15. Hubálek Z, Scholz HC, Sedláček I, Melzer F, Sanogo YO, Nesvadbová J. Brucellosis of the common vole (Microtus arvalis). Vector-Borne Zoonotic Dis. 2007;7(4):679–87. doi:10.1089/vbz.2007.0110.
  16. Godfroid J. Brucellosis in wildlife spillover versus sustainable infection or disease. 2002;21(2):277–86.
  17. Hammerl JA, Ulrich RG, Imholt C, Scholz HC, Jacob J, Kratzmann N, et al. Molecular survey on brucellosis in rodents and shrews – Natural reservoirs of novel Brucella species in Germany? Transbound Emerg Dis. 2017;64(2):663–71. doi:10.1111/tbed.12418.
  18. Vedasto ER, Silayo VC, Mrema GC. Factors that influence smallholder farmers’ decisions to employ hermetic bag technology for maize grain storage in Kilosa District, Tanzania. Int J Sci Res Updat. 2022;4(1):346–55.
  19. Chipwaza B, Mugasa JP, Mayumana I, Amuri M, Makungu C, Gwakisa PS. Community knowledge and attitudes and health workers’ practices regarding non-malaria febrile illnesses in Eastern Tanzania. PLoS Negl Trop Dis. 2014;8(5). doi:10.1371/journal.pntd.0002896.
  20. Giulieri S, Jaton K, Cometta A, Trellu LT, Greub G. Development of a duplex real-time PCR for the detection of Rickettsia spp. and typhus group rickettsia in clinical samples. FEMS Immunol Med Microbiol. 2012;64(1):92–7. doi:10.1111/j.1574-695X.2011.00893.x.
  21. Masola S, Bakengesa I, Chang’a E, Guni F. A review on brucellosis in Tanzania: Prevalence in livestock, wildlife, and humans from 1962-2021, public awareness and knowledge on the disease, and the way forward towards disease control. Eur J Vet Med. 2023;3(4):6–13.
  22. EU B. Brucellosis Rose Bengal Test. 2010;(May):1–5.
  23. Svanova. The best way to detect brucellosis in livestock herds. 2019. Available from: https://www.svanova.com/content/dam/internet/ah/svanova/dk_EN/documents/porcine/Brucella-C_Infosheet_02.pdf.
  24. Chitupila GY, Komba EVG, Mtui-Malamsha NJ. Epidemiological study of bovine brucellosis in indigenous cattle population in Kibondo and Kakonko districts, Western Tanzania. Livest Res Rural Dev. 2015;27(6).
  25. Swai ES, Mkumbukwa AJ, Chaula SL, Leba BG. Epidemiological investigation of bovine brucellosis in indigenous cattle herds in Kasulu district of Tanzania. Yale J Biol Med. 2021;94(2):285–96.
  26. Muma JB, Samui KL, Siamudaala VM, Oloya J, Matope G, Omer MK, et al. Prevalence of antibodies to Brucella spp. and individual risk factors of infection in traditional cattle, goats and sheep reared in livestock-wildlife interface areas of Zambia. Trop Anim Health Prod. 2006;38(3):195–206. doi:10.1007/s11250-006-4300-2.
  27. Tasiame W, Emikpe BO, Folitse RD, Fofie CO, Burimuah V, Johnson S, et al. The prevalence of brucellosis in cattle and their handlers in North Tongu District of Volta Region, Ghana. Afr J Infect Dis. 2016;10(2):111–7. doi:10.21010/ajid.v10i2.1.
  28. Chota A, Magwisha H, Stella B, Bunuma E, Shirima G, Mugambi J, et al. Prevalence of brucellosis in livestock and incidences in humans in East Africa. Afr Crop Sci J. 2016;24(1):45.
  29. Matope G, Bhebhe E, Muma JB, Lund A, Skjerve E. Herd-level factors for Brucella seropositivity in cattle reared in smallholder dairy farms of Zimbabwe. Prev Vet Med. 2010;94(3–4):213–21. doi:10.1016/j.prevetmed.2010.01.003.
  30. Dinka H, Chala R. Seroprevalence study of bovine brucellosis in pastoral and agro-pastoral areas of East Showa Zone, Oromia Regional State, Ethiopia. J Agric Environ Sci. 2009;6(5):508–12.
  31. Hull NC, Schumaker BA. Comparisons of brucellosis between human and veterinary medicine. Infect Ecol Epidemiol. 2018;8(1). doi:10.1080/20008686.2018.1500846.
  32. Shirima, G. M. (2005). The epidemiology of brucellosis in animals and humans in Arusha and Manyara regions of Tanzania. PhD thesis, University of Glasgow. Glasgow, UK, 1-316 pp. available from: https://www.suaire.sua.ac.tz/server/api/core/bitstreams/d6b7eb96-e3b6-45d5-b9e1-b43dd3f626ac/content
  33. Mellau LSB, Kuya SL, Wambura PN. Seroprevalence of brucellosis in domestic ruminants in livestock-wildlife interface: A case study of Ngorongoro Conservation Area, Arusha, Tanzania. Tanzania Vet J. 2009;26(1).
  34. Al-Majali AM, Talafha AQ, Ababneh MM, Ababneh MM. Seroprevalence and risk factors for bovine brucellosis in Jordan. J Vet Sci. 2009;10(1):61–5. doi:10.4142/jvs.2009.10.1.61.
  35. Berhe G, Belihu K, Asfaw Y. Seroepidemiological investigation of bovine brucellosis in the extensive cattle production system of Tigray Region of Ethiopia. Int J Appl Res Vet Med. 2007;5(2):65–71.
  36. Swai ES, Schoonman L. The use of rose bengal plate test to assess cattle exposure to Brucella infection in traditional and smallholder dairy production systems of Tanga Region of Tanzania. Vet Med Int. 2010;2010. doi:10.4061/2010/837950.
  37. Ntirandekura JB, Matemba LE, Kimera SI, Muma JB, Karimuribo ED. Association of brucellosis with abortion prevalence in humans and animals in Africa: A review. Afr J Reprod Health. 2018;22(3):120–36. doi:10.29063/ajrh2018/v22i3.14.
  38. Deresa B, Tulu D, Deressa FB. Epidemiological investigation of cattle abortion and its association with brucellosis in Jimma Zone, Ethiopia. Vet Med Res Reports. 2020;11:87–98. doi:10.2147/VMRR.S272604.
  39. Katakweba AAS, Mulungu LS, Eiseb SJ, Mahlaba TA, Makundi RH, Massawe AW, et al. Prevalence of haemoparasites, leptospires and coccobacilli with potential for human infection in the blood of rodents and shrews from selected localities in Tanzania, Namibia and Swaziland. Afr Zool. 2012;47(1):119–27. doi:10.3377/004.047.0114.
  40. Leal-Klevezas DS, Martínez-Vázquez IO, García-Cantú J, López-Merino A, Martínez-Soriano JP. Use of polymerase chain reaction to detect Brucella abortus biovar 1 in infected goats. Vet Microbiol. 2000;75(1):91–7. doi:10.1016/S0378-1135(00)00186-8.


How to Cite

1.
Mwamengele G, Sabuni C, Mathew C. Seroprevalence and risk factors for brucellosis in cattle and rodents in Kilosa district, Morogoro, Tanzania. jidhealth [Internet]. 2024 Aug. 31 [cited 2024 Sep. 10];7(4):1123-30. Available from: https://jidhealth.com/index.php/jidhealth/article/view/363