Skip to main content Skip to main navigation menu Skip to site footer
Articles
Published: 2024-12-31

Biofilm formation and virulence factors in streptococcus pyogenes isolated from pharyngitis patients: implications for diagnosis and treatment

Department of Microbiology, College of Medicine, University of Babylon, Babylon, Iraq
Department of Microbiology, College of Medicine, University of Babylon, Babylon, Iraq
16s rRNA typing, Pharyngitis, VITEK 2 system, Streptococcus, Biofilm production, Iraq

Abstract

Background: Streptococcus, including Streptococcus pyogenes, causes infections from mild to severe. Understanding biofilm formation and virulence is crucial due to high mortality. This study aims to assess the biofilm production capabilities of different Streptococcus species isolated from patients with suspected pharyngitis. Specifically, it examines the correlation between biofilm formation and the bacterial virulence of Streptococcus pyogenes.

Methods: A total of 100 throat swabs were collected and cultured on selective media, specifically 5% defibrinated sheep blood agar and azide blood agar. Identification of isolates was achieved using the Vitek2 System and confirmed through 16S rRNA gene amplification and sequencing, utilizing specific primers. The nucleotide sequences were compared to reference databases to ensure accurate identification. Biofilm production was evaluated using the Congo Red Agar method and the Microtiter Plate Test, categorizing isolates based on their production capacity.

Results: The results revealed a high bacterial growth rate of 89.0%, with Streptococcus pyogenes being the most prevalent isolate (28.6%), followed by Streptococcus pneumoniae and Streptococcus viridans. Significant variations in biofilm production were observed, with Streptococcus pyogenes exhibiting a strong correlation with significant biofilm formation, suggesting its potential enhanced virulence and increased resistance to treatments.

Conclusion: The findings highlight the critical role of biofilm formation in the virulence of Streptococcus pyogenes and underscore the need for integrating biochemical, molecular, and phenotypic methods for accurate bacterial identification and understanding of their pathogenic mechanisms. The use of molecular methods such as 16S rRNA sequencing provides a robust framework for the identification and characterization of these pathogens, contributing essential insights into the clinical implications of bacterial biofilm formation and informing improved management strategies against Streptococcus-related infections.



Downloads

Download data is not yet available.

References

  1. Creti R. Have group A and B streptococcal infections become neglected diseases in Europe? Springer; 2017. p. 1063-4.
  2. Karpay S, Sarada C, Kondu D, Pavuluri P, Gadepalli R, Naresh B. Evaluation of biochemical parameters in acute myocardial infarction and angina patients. J Ideas Health. 2022 May 14;5(2):664-668. doi: 10.47108/jidhealth.vol5.iss2.213.
  3. Slotved H-C, Hoffmann S. The epidemiology of invasive group B Streptococcus in Denmark from 2005 to 2018. Front Public Health. 2020;8:40. doi: 10.3389/fpubh.2020.00040.
  4. Stevens DL, Bryant AE. Streptococcus pyogenes Impetigo, Erysipelas, and Cellulitis. 2022.
  5. Patel JB. 16S rRNA gene sequencing for bacterial pathogen identification in the clinical laboratory. Mol Diagn. 2001;6:313-21. doi: 10.1385/MD:6:4:313.
  6. Gonzales-Siles L, Karlsson R, Schmidt P, Salvà-Serra F, Jaén-Luchoro D, Skovbjerg S, et al. A pangenome approach for discerning species-unique gene markers for identifications of Streptococcus pneumoniae and Streptococcus pseudopneumoniae. Front Cell Infect Microbiol. 2020;10:222. doi: 10.3389/fcimb.2020.00222.
  7. Church DL, Cerutti L, Gürtler A, Griener T, Zelazny A, Emler S. Performance and application of 16S rRNA gene cycle sequencing for routine identification of bacteria in the clinical microbiology laboratory. Clin Microbiol Rev. 2020;33(4):e00053-19. doi: 10.1128/CMR.00053-19.
  8. Bador J, Nicolas B, Chapuis A, Varin V, Dullier-Taillefumier N, de Curraize C, et al. 16S rRNA PCR on clinical specimens: impact on diagnosis and therapeutic management. Med Mal Infect. 2020;50(1):63-73. doi: 10.1016/j.medmal.2020.01.001.
  9. Fiedler T, Köller T, Kreikemeyer B. Streptococcus pyogenes biofilms—formation, biology, and clinical relevance. Front Cell Infect Microbiol. 2015;5:15. doi: 10.3389/fcimb.2015.00015.
  10. Lembke C, Podbielski A, Hidalgo-Grass C, Jonas L, Hanski E, Kreikemeyer B. Characterization of biofilm formation by clinically relevant serotypes of group A streptococci. Appl Environ Microbiol. 2006;72(4):2864-75. doi: 10.1128/AEM.72.4.2864-2875.2006.
  11. Baldassarri L, Creti R, Recchia S, Imperi M, Facinelli B, Giovanetti E, et al. Therapeutic failures of antibiotics used to treat macrolide-susceptible Streptococcus pyogenes infections may be due to biofilm formation. J Clin Microbiol. 2006;44(8):2721-7. doi: 10.1128/JCM.00561-06.
  12. Conley J, Olson ME, Cook LS, Ceri H, Phan V, Davies HD. Biofilm formation by group A streptococci: is there a relationship with treatment failure? J Clin Microbiol. 2003;41(9):4043-8. doi: 10.1128/JCM.41.9.4043-4048.2003.
  13. Marks LR, Reddinger RM, Hakansson AP. Biofilm formation enhances fomite survival of Streptococcus pneumoniae and Streptococcus pyogenes. Infect Immun. 2014;82(3):1141-6. doi: 10.1128/IAI.01310-13.
  14. Speziale P, Geoghegan JA. Biofilm formation by staphylococci and streptococci: structural, functional, and regulatory aspects and implications for pathogenesis. Front Media SA. 2015; p. 31. doi: 10.3389/978-2-88919-555-1.
  15. Matysik A, Kline KA. Streptococcus pyogenes capsule promotes microcolony-independent biofilm formation. J Bacteriol. 2019;201(18):e00052-19. doi: 10.1128/JB.00052-19.
  16. Luo F, Lizano S, Banik S, Zhang H, Bessen DE. Role of Mga in group A streptococcal infection at the skin epithelium. Microb Pathog. 2008;45(3):217-24. doi: 10.1016/j.micpath.2008.04.008.
  17. Srinivasan R, Karaoz U, Volegova M, MacKichan J, Kato-Maeda M, Miller S, et al. Use of 16S rRNA gene for identification of a broad range of clinically relevant bacterial pathogens. PLoS One. 2015;10(2):e0117617. doi: 10.1371/journal.pone.0117617.
  18. Alim-Marvasti A. Non-invasive thrombectomy: magnetized antibodies in reperfusion of thromboses. J Ideas Health. 2020 May 17;3(1):135-137. doi: 10.47108/jidhealth.vol3.iss1.46.
  19. Al Bulushi IM, Al Kharousi ZS, Rahman MS. Vitek: a platform for a better understanding of microbes. In: Techniques to measure food safety and quality: microbial, chemical, and sensory. 2021:117-36.
  20. Radi AQ, Hammadi AA, HM AA. Detection of Streptococcus pyogenes from Clinical Isolates in Iraqi Community. 2022.
  21. Snyder ML, Lichstein HC. Sodium azide as an inhibiting substance for gram-negative bacteria. J Infect Dis. 1940;67(2):113-5. doi: 10.1093/infdis/67.2.113.
  22. Mallmann W. A new yardstick for measuring sewage pollution. Sewage Works J. 1940;875-8.
  23. Rizal NSM, Neoh H-M, Ramli R, Hanafiah A, Samat MNA, Tan TL, et al. Advantages and limitations of 16S rRNA next-generation sequencing for pathogen identification in the diagnostic microbiology laboratory: perspectives from a middle-income country. Diagnostics. 2020;10(10):1-15. doi: 10.3390/diagnostics10100874.
  24. Peker N, Garcia-Croes S, Dijkhuizen B, Wiersma HH, van Zanten E, Wisselink G, et al. A comparison of three different bioinformatics analyses of the 16S–23S rRNA encoding region for bacterial identification. Front Microbiol. 2019;10:620. doi: 10.3389/fmicb.2019.00620.
  25. Skutlaberg DH, Wiker HG, Mylvaganam H, IS Group, Norrby-Teglund A, Skrede S. Consistent biofilm formation by Streptococcus pyogenes emm 1 isolated from patients with necrotizing soft tissue infections. Front Microbiol. 2022;13:822243. doi: 10.3389/fmicb.2022.822243.
  26. Alves-Barroco C, Paquete-Ferreira J, Santos-Silva T, Fernandes AR. Singularities of pyogenic streptococcal biofilms–from formation to health implication. Front Microbiol. 2020;11:584947. doi: 10.3389/fmicb.2020.584947.
  27. Gómez-Mejia A, Orlietti M, Tarnutzer A, Mairpady Shambat S, Zinkernagel AS. Inhibition of Streptococcus pyogenes biofilm by Lactiplantibacillus plantarum and Lacticaseibacillus rhamnosus. mSphere. 2024; e00430-24. doi: 10.1128/msphere.00430-24.
  28. Muteeb G, Rehman MT, Shahwan M, Aatif M. Origin of antibiotics and antibiotic resistance, and their impacts on drug development: A narrative review. Pharmaceuticals. 2023;16(11):1615. doi: 10.3390/ph16111615.


How to Cite

1.
Alghrairi A, Bunyan I. Biofilm formation and virulence factors in streptococcus pyogenes isolated from pharyngitis patients: implications for diagnosis and treatment . J Ideas Health [Internet]. 2024 Dec. 31 [cited 2025 Jan. 15];7(6):1187-91. Available from: https://jidhealth.com/index.php/jidhealth/article/view/374