Skip to main content Skip to main navigation menu Skip to site footer
Articles
Published: 2024-12-31

The penetration, possibility of protection and treatment of COVID-19

Radioisotope Department, Nuclear Research Center, Atomic Energy Authority, Dokki 12311, Egypt
Radioisotope Department, Nuclear Research Center, Atomic Energy Authority, Dokki 12311, Egypt
COVID-19, SARS-CoV-2, Penetration Mechanisms, Viral Entry Receptors, Viral Replication, Treatment Strategies

Abstract

The COVID-19 pandemic, caused by the novel SARS-CoV-2 coronavirus, has had an unprecedented global impact, highlighting the urgent need to understand the virus's penetration mechanisms, prevention methods, and the most effective treatment strategies. This review aims to provide a comprehensive overview of the current knowledge and emerging developments in these areas. Firstly, the review examines the intricate pathways through which SARS-CoV-2 penetrates host cells. It explores the viral entry receptors, including angiotensin-converting enzyme 2 (ACE2), and highlights the potential involvement of other receptors. Additionally, the review delves into the processes of viral replication, shedding light on the viral kinetics and factors influencing transmissibility. Secondly, the review presents an in-depth analysis of the various measures employed to protect individuals and communities from SARS-CoV-2 infection. It discusses the effectiveness of non-pharmaceutical interventions, such as physical distancing, mask-wearing, and hand hygiene, in reducing transmission. Furthermore, the review explores the development and deployment of vaccines, including traditional approaches and novel vaccine platforms, examining their efficacy, safety, and the challenges posed by emerging variants. Lastly, the review provides an overview of the current treatment strategies for COVID-19. It evaluates the effectiveness of antiviral drugs, immunomodulatory therapies, and supportive care approaches in managing the disease. By gaining a deeper understanding of these aspects, we can contribute to the development of evidence-based interventions and improve global health outcomes in the face of COVID-19 and future pandemics. 

 



Downloads

Download data is not yet available.

References

  1. Jadoo SA. COVID-19 pandemic is a worldwide typical biopsychosocial crisis. Journal of Ideas in Health. 2020 Aug 17;3(2):152-4. https://doi.org/10.47108/jidhealth.Vol3.Iss2.58
  2. Lu L, Lankala S, Gong Y, Feng X, Chang BG. COVID-19 dispatches. Cult Stud Crit Methodol. 2021;21(1):97–115. https://doi.org/10.1177/1532708620953190
  3. Negi K, Agarwal M, Pahuja I, Bhardwaj B, Rawat M, Bhaskar A, et al. Combating the challenges of COVID-19 pandemic: Insights into molecular mechanisms, immune responses and therapeutics against SARS-CoV-2. Oxford Open Immunol. 2023;4(1):iqad001. https://doi.org/10.1093/oxfimm/iqad001
  4. Li X, Yuan H, Li X, Wang H. Spike protein mediated membrane fusion during SARS‐CoV‐2 infection. J Med Virol. 2023;95(1):e28212. https://doi.org/10.1002/jmv.28212
  5. Brüssow H, Zuber S. Can a combination of vaccination and face mask wearing contain the COVID‐19 pandemic? Microb Biotechnol. 2022;15(3):721–37. https://doi.org/10.1111/1751-7915.13997
  6. Sachs JD, Karim SA, Aknin L, Allen J, Brosbøl K, Barron GC, et al. Lancet COVID-19 Commission Statement on the occasion of the 75th session of the UN General Assembly. Lancet. 2020;396(10257):1102–24. https://doi.org/10.1016/S0140-6736(20)31927-9
  7. Kalliath JD, Kizhatil A, Rose BM, Kuncheria AM, John A. Knowledge, attitude, and practice regarding COVID-19 pandemic among medical students of Ernakulam, India. Journal of Ideas in Health. 2021;4(Special1):337-42. https://doi.org/10.47108/jidhealth.Vol4.IssSpecial1.103
  8. Sosyal D, Ozmen O, Bektay MY, Izzettin FV. Treatment of coronavirus disease 2019: a comprehensive review. Journal of Ideas in Health. 2020 Nov 24;3(4):228-42. https://doi.org/10.47108/jidhealth.Vol3.Iss4.71
  9. Gao Y, Shi C, Chen Y, Shi P, Liu J, Xiao Y, et al. A cluster of the Corona Virus Disease 2019 caused by incubation period transmission in Wuxi, China. J Infect. 2020;80(6):666–70. https://doi.org/10.1016/j.jinf.2020.03.042
  10. Anton N, Hornbeck T, Modlin S, Haque MM, Crites M, Yu D. Identifying factors that nurses consider in the decision-making process related to patient care during the COVID-19 pandemic. PLoS One. 2021;16(7):e0254077. https://doi.org/10.1371/journal.pone.0254077
  11. Smith TP, Flaxman S, Gallinat AS, Kinosian SP, Stemkovski M, Unwin HJT, et al. Temperature and population density influence SARS-CoV-2 transmission in the absence of nonpharmaceutical interventions. Proc Natl Acad Sci. 2021;118(25):e2019284118. https://doi.org/10.1073/pnas.2019284118
  12. Wu Z, Harrich D, Li Z, Hu D, Li D. The unique features of SARS‐CoV‐2 transmission: Comparison with SARS‐CoV, MERS‐CoV and 2009 H1N1 pandemic influenza virus. Rev Med Virol. 2021;31(2):e2171. https://doi.org/10.1002/rmv.2171
  13. Rashedi J, Mahdavi Poor B, Asgharzadeh V, Pourostadi M, Samadi Kafil H, Vegari A, et al. Risk factors for COVID-19. Infez Med. 2020;28(4):469–74.
  14. Priestnall SL. Canine respiratory coronavirus: A naturally occurring model of COVID-19? Vet Pathol. 2020;57(4):467–71. https://doi.org/10.1177/0300985820926485
  15. De Sabato L, Di Bartolo I, De Marco MA, Moreno A, Lelli D, Cotti C, et al. Can coronaviruses steal genes from the host as evidenced in western European hedgehogs by EriCoV genetic characterization? Viruses. 2020;12(12):1471. https://doi.org/10.3390/v12121471
  16. Gloza-Rausch F, Ipsen A, Seebens A, Göttsche M, Panning M, Drexler JF, et al. Detection and prevalence patterns of group I coronaviruses in bats, northern Germany. Emerg Infect Dis. 2008;14(4):626. https://doi.org/10.3201/eid1404.071439
  17. Chugh T. Middle East respiratory syndrome. Elsevier; 2017. 27;7(4):127. https://doi.org/10.1016/j.cmrp.2017.06.002
  18. Ozomata SA. Occurrence of Middle East Respiratory Syndrome-Corona Virus in Ranched Camels in Naivasha, Nakuru County, Kenya. university of nairobi; 2019.
  19. Hufnagel L, Brockmann D, Geisel T. Forecast and control of epidemics in a globalized world. Proc Natl Acad Sci. 2004;101(42):15124–9. https://doi.org/10.1073/pnas.0308344101
  20. Meo SA, Alhowikan AM, Al-Khlaiwi T, Meo IM, Halepoto DM, Iqbal M, et al. Novel coronavirus 2019-nCoV: prevalence, biological and clinical characteristics comparison with SARS-CoV and MERS-CoV. Eur Rev Med Pharmacol Sci. 2020;24(4):2012–9.
  21. Wang W, Tang J, Wei F. Updated understanding of the outbreak of 2019 novel coronavirus (2019‐nCoV) in Wuhan, China. J Med Virol. 2020;92(4):441–7. https://doi.org/10.1002/jmv.25689
  22. Organization WH. Epidemic and Pandemic-Prone Diseases: MERS Situation Update. Last accessed. 2020;
  23. Alenazi TH, Arabi YM. Severe Middle East respiratory syndrome (MERS) pneumonia. Encycl Respir Med. 2021;17: 362–372. https://doi.org/10.1016/B978-0-12-801238-3.11488-6
  24. Khelashvili G, Plante A, Doktorova M, Weinstein H. Ca2+-dependent mechanism of membrane insertion and destabilization by the SARS-CoV-2 fusion peptide. Biophys J. 2021;120(6):1105–19. https://doi.org/10.1016/j.bpj.2021.02.023
  25. Sato A, Wang R, Ma H, Hsiao BS, Chu B. Novel nanofibrous scaffolds for water filtration with bacteria and virus removal capability. J Electron Microsc (Tokyo). 2011;60(3):201–9. https://doi.org/10.1093/jmicro/dfr039
  26. Makvandi P, Chen M, Sartorius R, Zarrabi A, Ashrafizadeh M, Moghaddam FD, Ma J, Mattoli V, Tay FR. Endocytosis of abiotic nanomaterials and nanobiovectors: Inhibition of membrane trafficking. Nano Today. 2021;40:101279. https://doi.org/10.1016/j.nantod.2021.101279
  27. Dhama K, Khan S, Tiwari R, Sircar S, Bhat S, Malik YS, Singh KP, Chaicumpa W, Bonilla-Aldana DK, Rodriguez-Morales AJ. Coronavirus disease 2019–COVID-19. Clinical microbiology reviews. 2020; 33(4):e00028-20. https://doi.org/10.1128/cmr.00028-20
  28. Munansangu BS, Kenyon C, Walzl G, Loxton AG, Kotze LA, du Plessis N. Immunometabolism of myeloid-derived suppressor cells: implications for mycobacterium tuberculosis infection and insights from tumor biology. International Journal of Molecular Sciences. 2022;23(7):3512. https://doi.org/10.3390/ijms23073512
  29. Solomon T, Lewthwaite P, Perera D, Cardosa MJ, McMinn P, Ooi MH. Virology, epidemiology, pathogenesis, and control of enterovirus 71. Lancet Infect Dis. 2010;10(11):778–90. https://doi.org/10.1016/S1473-3099(10)70194-8
  30. Dimitrov DS. Virus entry: molecular mechanisms and biomedical applications. Nat Rev Microbiol. 2004;2(2):109–22. doi:10.1038/nrmicro817
  31. Weber JN, Weiss RA. HIV Infection. Sci Am. 1988;259(4):100–9.
  32. McMichael AJ, Borrow P, Tomaras GD, Goonetilleke N, Haynes BF. The immune response during acute HIV-1 infection: clues for vaccine development. Nat Rev Immunol. 2010;10(1):11–23. doi:10.1038/nri2674
  33. Strauss EG, Strauss JH. Viruses and human disease. Elsevier; 2007.
  34. Ortega V, Stone JA, Contreras EM, Iorio RM, Aguilar HC. Addicted to sugar: roles of glycans in the order Mononegavirales. Glycobiology. 2019;29(1):2–21. https://doi.org/10.1093/glycob/cwy053
  35. Kaufmann B, Rossmann MG. Molecular mechanisms involved in the early steps of flavivirus cell entry. Microbes Infect. 2011;13(1):1–9. https://doi.org/10.1016/j.micinf.2010.09.005
  36. Malim MH, Emerman M. HIV-1 accessory proteins—ensuring viral survival in a hostile environment. Cell Host Microbe. 2008;3(6):388–98. DOI 10.1016/j.chom.2008.04.008
  37. Pal M, Berhanu G, Desalegn C, Kandi V. Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2): An Update. Cureus. 2020;12(3). https://doi.org/10.7759/cureus.7423
  38. Zhou H, Chen X, Hu T, Li J, Song H, Liu Y, Wang P, Liu D, Yang J, Holmes EC, Hughes AC. A novel bat coronavirus closely related to SARS-CoV-2 contains natural insertions at the S1/S2 cleavage site of the spike protein. Current biology. 2020 Jun 8;30(11):2196-203. https://doi.org/10.1016/j.cub.2020.05.023
  39. Kakavandi S, Zare I, VaezJalali M, Dadashi M, Azarian M, Akbari A, Ramezani Farani M, Zalpoor H, Hajikhani B. Structural and non-structural proteins in SARS-CoV-2: potential aspects to COVID-19 treatment or prevention of progression of related diseases. Cell Communication and Signaling. 2023 May 15;21(1):110. https://doi.org/10.1186/s12964-023-01104-5
  40. Cosset FL, Lavillette D. Cell entry of enveloped viruses. In: Advances in genetics. Elsevier; 2011. p. 121–83. https://doi.org/10.1016/B978-0-12-380860-8.00004-5
  41. Davidson AM, Wysocki J, Batlle D. Interaction of SARS-CoV-2 and other coronavirus with ACE (angiotensin-converting enzyme)-2 as their main receptor: therapeutic implications. Hypertension. 2020 Nov;76(5):1339-49. https://doi.org/10.1161/HYPERTENSIONAHA.120.15256
  42. Santos RA, Ferreira AJ, Verano-Braga T, Bader M. Angiotensin-converting enzyme 2, angiotensin-(1-7) and Mas: new players of the renin-angiotensin system. J endocrinol. 2013;216(2):R1–17. http://dx.doi.org/10.1530/JOE-12-0341
  43. Chappell MC. Nonclassical renin‐angiotensin system and renal function. Compr Physiol. 2012;2(4):2733–52. https://doi.org/10.1002/cphy.c120002
  44. Candido R, Bernardi S, Fabris B. Hypertension and Diabetes: Emphasis on the Renin-Angiotensin System in Atherosclerosis. Curr Hypertens Rev. 2009;5(3):181–201. https://doi.org/10.2174/157340209788921167
  45. Yalcin HC, Sukumaran V, Al-Ruweidi MK, Shurbaji S. Do changes in ACE-2 expression affect SARS-CoV-2 virulence and related complications: a closer look into membrane-bound and soluble forms. International Journal of Molecular Sciences. 2021;22(13):6703. https://doi.org/10.3390/ijms22136703
  46. Gross S, Jahn C, Cushman S, Baer C, Thum T. SARS-CoV-2 receptor ACE2-dependent implications on the cardiovascular system: From basic science to clinical implications. Journal of molecular and cellular cardiology. 2020 Jul 1;144:47-53. https://doi.org/10.1016/j.yjmcc.2020.04.031
  47. Driggin E, Madhavan M V, Bikdeli B, Chuich T, Laracy J, Bondi-Zoccai G, et al. Cardiovascular considerations for patients, health care workers, and health systems during the coronavirus disease 2019 (COVID-19) pandemic. J Am Coll Cardiol. 2020;
  48. Guan W jie, Ni Z yi, Hu Y, Liang W hua, Ou C quan, He J xing, et al. Clinical characteristics of 2019 novel coronavirus infection in China. MedRxiv. 2020; https://doi.org/10.1056/NEJMoa2002032
  49. Danser AHJ, Epstein M, Batlle D. Renin-angiotensin system blockers and the COVID-19 pandemic: at present there is no evidence to abandon Renin-Angiotensin system blockers. Hypertension. 2020; 75(6): 1382-1385 https://doi.org/10.1161/HYPERTENSIONAHA.120.15082
  50. Khurana V, Goswami B. Angiotensin converting enzyme (ACE). Clinica Chimica Acta. 2022;524:113-22. https://doi.org/10.1016/j.cca.2021.10.029
  51. Messerli FH, Bangalore S, Bavishi C, Rimoldi SF. Angiotensin-converting enzyme inhibitors in hypertension: to use or not to use?. Journal of the American College of Cardiology. 2018 Apr 3;71(13):1474-82. https://doi.org/10.1016/j.jacc.2018.01.058
  52. Sahin AR, Erdogan A, Agaoglu PM, Dineri Y, Cakirci AY, Senel ME, et al. 2019 novel coronavirus (COVID-19) outbreak: A review of the current literature. EJMO. 2020;4(1):1–7. DOI: 10.14744/ejmo.2020.12220
  53. STRAUSS JH, STRAUSS EG. Overview of viruses and virus infection. Viruses Hum Dis. 2008; 27:1- 33 https://doi.org/10.1016/B978-0-12-373741-0.50004-0
  54. van Doorn HR, Yu H. Viral respiratory infections. InHunter's tropical medicine and emerging infectious diseases 2020 Jan 1 (pp. 284-288). Elsevier. https://doi.org/10.1016/B978-0-323-55512-8.00033-8
  55. Force T. COVID-19: Facts and Recommendations from A to Z. Sci Insigt. 2020;33(1):138–58.
  56. Singhal T. A review of coronavirus disease-2019 (COVID-19). Indian J Pediatr. 2020; 87(4):281–286 https://doi.org/10.1007/s12098-020-03263-6
  57. Ortiz-prado E, Simbaña-rivera K, Barreno LG, Rubio- M, Guaman LP, Muslin C, et al. Clinical , molecular and epidemiological characterization of the SARS- CoV2 virus and the Coronavirus disease 2019 ( COVID-19 ), a comprehensive literature review. 2020;2019(April). https://doi.org/10.1016/j.diagmicrobio.2020.115094
  58. Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020;395(10223):497–506. https://doi.org/10.1016/S0140-6736(20)30183-5
  59. Chen T, Wu D, Chen H, Yan W, Yang D, Chen G, et al. Clinical characteristics of 113 deceased patients with coronavirus disease 2019: retrospective study. Bmj. 2020;368. https://doi.org/10.1136/bmj.m1091
  60. Ai T, Yang Z, Xia L. Correlation of Chest CT and RT-PCR Testing in Coronavirus Disease. Radiology. 2020;2019:1–8. https://doi.org/10.1148/radiol.2020200642
  61. Mukhtar F, Mukhtar N. Special Communication Coronavirus (Covid-19): Let ’ S Prevent Not Panic. J Ayub Med Coll Abbottabad. 2020;32(1):141–4.
  62. Laughlin C, Schleif A, Heilman CA. Addressing viral resistance through vaccines. Future Virol. 2015;10(8):1011–22. https://doi.org/10.2217/fvl.15.53
  63. Petchiappan A, Chatterji D. Antibiotic resistance: Current perspectives. ACS Omega. 2017;2(10):7400–9. https://doi.org/10.1021/acsomega.7b01368
  64. Vilas Boas LCP, Campos ML, Berlanda RLA, de Carvalho Neves N, Franco OL. Antiviral peptides as promising therapeutic drugs. Cell Mol Life Sci [Internet]. 2019;76(18):3525–42. Available from: https://doi.org/10.1007/s00018-019-03138-w
  65. Yager EJ, Konan K V. Sphingolipids as potential therapeutic targets against enveloped human RNA viruses. Viruses. 2019;11(10):1–14. https://doi.org/10.3390/v11100912
  66. Katsuhisa Kitano, Satoshi Hamaguchi HA. ( 12 ) Patent Application Publication ( 10 ) Pub . No .: US 2010 / 0035098 A1 Patent Application Publication. 2010;1(19):1–5. Available from: https://patentimages.storage.googleapis.com/3b/c9/82/c283c7b24afe69/US20100019677A1.pdf
  67. Anderer S. Amid Bird Flu Cases, CDC Issues Emergency Use Instructions for Tamiflu. JAMA. 2024 Sep 17;332(11):865-865.https://doi:10.1001/jama.2024.15876
  68. Trier N, Hansen P, Houen G. Peptides, antibodies, peptide antibodies and more. Int J Mol Sci. 2019;20(24):1–22. https://doi.org/10.3390/ijms20246289
  69. Planells‐Ferrer L, Urresti J, Coccia E, Galenkamp KM, Calleja‐Yagüe I, López‐Soriano J, Carriba P, Barneda‐Zahonero B, Segura MF, Comella JX. Fas apoptosis inhibitory molecules: more than death‐receptor antagonists in the nervous system. Journal of neurochemistry. 2016 Oct;139(1):11-21. https://doi.org/10.1111/jnc.13729
  70. Stephenson KE, Julg B, Tan CS, Zash R, Walsh SR, Rolle CP, Monczor AN, Lupo S, Gelderblom HC, Ansel JL, Kanjilal DG. Safety, pharmacokinetics and antiviral activity of PGT121, a broadly neutralizing monoclonal antibody against HIV-1: a randomized, placebo-controlled, phase 1 clinical trial. Nature medicine. 2021;27(10):1718-24. https://doi.org/10.1038/s41591-021-01509-0
  71. Lai CC, Ko WC, Lee PI, Jean SS, Hsueh PR. Extra-respiratory manifestations of COVID-19. International journal of antimicrobial agents. 2020 Aug 1;56(2):106024. https://doi.org/10.1016/j.ijantimicag.2020.106024
  72. Tu YF, Chien CS, Yarmishyn AA, Lin YY, Luo YH, Lin YT, et al. A Review of SARS-CoV-2 and the Ongoing Clinical Trials. Int J Mol Sci. 2020;21(7): 2657- 2675. https://doi.org/10.3390/ijms21072657
  73. Borges do Nascimento IJ, Cacic N, Abdulazeem HM, von Groote TC, Jayarajah U, Weerasekara I, et al. Novel Coronavirus Infection (COVID-19) in Humans: A Scoping Review and Meta-Analysis. J Clin Med. 2020;9(4):941- 954. https://doi.org/10.3390/jcm9040941
  74. Long H, Zhao J, Zeng HL, Lu QB, Fang LQ, Wang Q, Wu QM, Liu W. Prolonged viral shedding of SARS-CoV-2 and related factors in symptomatic COVID-19 patients: a prospective study. BMC Infectious Diseases. 2021;21:1-10. https://doi.org/10.1186/s12879-021-07002-w
  75. Wu YC, Chen CS, Chan YJ. The outbreak of COVID-19: An overview. J Chinese Med Assoc. 2020;83(3):217–20. https://doi.org/10.1097/jcma.0000000000000270
  76. Andersen KG, Rambaut A, Lipkin WI, Holmes EC, Garry RF. The proximal origin of SARS-CoV-2. Nat Med. 2020;26: 450–452. https://doi.org/10.1038/s41591-020-0820-9
  77. Skowronski DM, de Serres G, Crowcroft NS, Janjua NZ, Boulianne N, Hottes TS, et al. Association between the 2008-09 seasonal influenza vaccine and pandemic H1N1 illness during spring-summer 2009: Four observational studies from Canada. PLoS Med. 2010; 7(4):e1000258. https://doi.org/10.1371/journal.pmed.1000258
  78. La Rosa C, Diamond DJ. The immune response to human CMV. Future Virol. 2012;7(3):279–93. https://doi.org/10.2217/fvl.12.8
  79. Ye ZW, Yuan S, Yuen KS, Fung SY, Chan CP, Jin DY. Zoonotic origins of human coronaviruses. Int J Biol Sci. 2020; 16(10):1686-1697. doi: 10.7150/ijbs.45472.
  80. Ding Z, Fang L, Yuan S, Zhao L, Wang X, Long S, et al. The nucleocapsid proteins of mouse hepatitis virus and severe acute respiratory syndrome coronavirus share the same IFN-β antagonizing mechanism: Attenuation of PACT-mediated RIG-I/MDA5 activation. Oncotarget. 2017;8(30):49655–70. https://doi.org/10.18632/oncotarget.17912
  81. Maier HJ, Bickerton E, Britton P. Coronaviruses: Methods and protocols. Coronaviruses Methods Protoc. 2015;1282(1):1–282.
  82. Kliger Y, Levanon EY, Gerber D. From genome to antivirals: SARS as a test tube. Drug Discov Today. 2005;10(5):345–52. https://doi.org/10.1016/S1359-6446(04)03320-3
  83. McCreary EK, Pogue JM. COVID-19 Treatment: A Review of Early and Emerging Options. Open Forum Infect Dis. 2020;1–11. https://doi.org/10.1093/ofid/ofaa105
  84. de Wit E, Feldmann F, Cronin J, Jordan R, Okumura A, Thomas T, et al. Prophylactic and therapeutic remdesivir (GS-5734) treatment in the rhesus macaque model of MERS-CoV infection. Proc Natl Acad Sci U S A. 2020;117(12):6771–6. https://doi.org/10.1073/pnas.1922083117
  85. Pang J, Wang MX, Ang IYH, Tan SHX, Lewis RF, Chen JIP, et al. Potential Rapid Diagnostics, Vaccine and Therapeutics for 2019 Novel Coronavirus (2019-nCoV): A Systematic Review. J Clin Med. 2020;9(3):623. https://doi.org/10.3390/jcm9030623
  86. Zong Z, Zhang Z, Wu L, Zhang L, Zhou F. The functional deubiquitinating enzymes in control of innate antiviral immunity. Adv Sci. 2021;8(2):2002484. https://doi.org/10.1002/advs.202002484
  87. Takeyama N, Kiyono H, Yuki Y. Plant-based vaccines for animals and humans: recent advances in technology and clinical trials. Ther Adv Vaccines. 2015;3(5–6):139–54. https://doi.org/10.1177/2051013615613272
  88. Fung SY, Yuen KS, Ye ZW, Chan CP, Jin DY. A tug-of-war between severe acute respiratory syndrome coronavirus 2 and host antiviral defence: lessons from other pathogenic viruses. Emerg Microbes Infect. 2020;9(1):558–70. https://doi.org/10.1080/22221751.2020.1736644
  89. Wouters OJ, Shadlen KC, Salcher-Konrad M, Pollard AJ, Larson HJ, Teerawattananon Y, et al. Challenges in ensuring global access to COVID-19 vaccines: production, affordability, allocation, and deployment. Lancet. 2021;397(10278):1023–34. https://doi.org/10.1016/
  90. Hua J, Shaw R. Corona Virus (COVID-19) “Infodemic” and Emerging Issues through a Data Lens: The Case of China. Int J Environ Res Public Health. 2020;17(7):2309. https://doi.org/10.3390/ijerph17072309
  91. Rabi FA, Al Zoubi MS, Al-Nasser AD, Kasasbeh GA, Salameh DM. Sars-cov-2 and coronavirus disease 2019: What we know so far. Pathogens. 2020;9(3):1–14. https://doi.org/10.3390/pathogens9030231
  92. Ghaab N, Abid I, Al-Majmaie F, Latif I. Gender disparities in lymphocyte counts and cytokine expression in COVID-19. Journal of Ideas in Health. 2024 Apr 30;7(2):1044-8. https://doi.org/10.47108/jidhealth.Vol7.Iss2.337
  93. Mohammadi M, Meskini M, Lucia A. 2019 Novel coronavirus (COVID-19) overview. 2020; 30:167–175. https://doi.org/10.1007/s10389-020-01258-3
  94. Foster S, Laing R, Melgaard B, Zaffran M. Chapter 72. Ensuring Supplies of Appropriate Drugs and Vaccines. Dis Control Priorities Dev Ctries (2nd Ed. 2006;1323–38.
  95. Dos Santos G, Seifert HA, Bauchau V, Shinde V, Barbeau DM, Cohet C. Adjuvanted (AS03) A/H1N1 2009 Pandemic Influenza Vaccines and Solid Organ Transplant Rejection: Systematic Signal Evaluation and Lessons Learnt. Drug Saf. 2017;40(8):693–702. https://doi.org/10.1007/s40264-017-0532-3
  96. Yitbarek K, Abraham G, Girma T, Tilahun T, Woldie M. The effect of Bacillus Calmette–Guérin (BCG) vaccination in preventing severe infectious respiratory diseases other than TB: Implications for the COVID-19 pandemic. Vaccine. 2020 Sep 22;38(41):6374-80. https://doi.org/10.1016/j.vaccine.2020.08.018
  97. Pittet LF, Messina NL, Orsini F, Moore CL, Abruzzo V, Barry S, Bonnici R, Bonten M, Campbell J, Croda J, Dalcolmo M. Randomized trial of BCG vaccine to protect against Covid-19 in health care workers. New England Journal of Medicine. 2023 Apr 27;388(17):1582-96. https:// doi: 10.1056/NEJMoa2212616
  98. World Health Organization. BCG vaccine: WHO position paper, February 2018 – Recommendations. Vaccine [Internet]. 2018;36(24):3408–10. Available from: https://doi.org/10.1016/j.vaccine.2018.03.009
  99. Gursel M, Gursel I. Is Global BCG Vaccination Coverage Relevant to The Progression of SARS-CoV-2 Pandemic? Med Hypotheses [Internet]. 2020;(PG-109707-109707):109707. Available from: http://www.sciencedirect.com/science/article/pii/S0306987720305193 NS
  100. Roth A, Garly ML, Jensen H, Nielsen J, Aaby P. Bacillus Calmette-Guerin vaccination and infant mortality. Expert Rev Vaccines. 2006;5(2):277–93. https://doi.org/10.1586/14760584.5.2.277
  101. Elgert KD. Immunology: understanding the immune system. John Wiley & Sons; 2009.
  102. Mellet J, Pepper MS. A COVID-19 vaccine: big strides come with big challenges. Vaccines. 2021;9(1):39. https://doi.org/10.3390/vaccines9010039
  103. Malik JA, Mulla AH, Farooqi T, Pottoo FH, Anwar S, Rengasamy KRR. Targets and strategies for vaccine development against SARS-CoV-2. Biomed Pharmacother. 2021;137:111254. https://doi.org/10.1016/j.biopha.2021.111254
  104. McGoldrick M, Gastineau T, Wilkinson D, Campa C, De Clercq N, Mallia-Milanes A, et al. How to accelerate the supply of vaccines to all populations worldwide? Part II: Initial industry lessons learned and detailed technical reflections leveraging the COVID-19 situation. Vaccine. 2022;40(9):1223–30. https://doi.org/10.1016/j.vaccine.2021.12.038
  105. Kremsner P, Mann P, Bosch J, Fendel R, Gabor JJ, Kreidenweiss A, et al. Phase 1 assessment of the safety and immunogenicity of an mRNA-lipid nanoparticle vaccine candidate against SARS-CoV-2 in human volunteers. MedRxiv. 2020;2011–20.
  106. Nagy A, Alhatlani B. An overview of current COVID-19 vaccine platforms. Comput Struct Biotechnol J. 2021;19:2508–17. https://doi.org/10.1007/s00508-021-01922-y
  107. Shin MD, Shukla S, Chung YH, Beiss V, Chan SK, Ortega-Rivera OA, et al. COVID-19 vaccine development and a potential nanomaterial path forward. Nat Nanotechnol. 2020;15(8):646–55. https://doi.org/10.1038/s41565-020-0737-y
  108. Masignani V, Pizza M, Moxon ER. The development of a vaccine against meningococcus B using reverse vaccinology. Front Immunol. 2019;10:751. https://doi.org/10.3389/fimmu.2019.00751
  109. Bok K, Sitar S, Graham BS, Mascola JR. Accelerated COVID-19 vaccine development: milestones, lessons, and prospects. Immunity. 2021;54(8):1636–51. https://doi.org/10.1016/j.immuni.2021.07.017
  110. Alshrari AS, Hudu SA, Imran M, Asdaq SMB, Ali AM, Rabbani SI. Innovations and development of COVID-19 vaccines: A patent review. J Infect Public Health. 2022;15(1):123–31. https://doi.org/10.1016/j.jiph.2021.10.021
  111. Bolislis WR, De Lucia ML, Dolz F, Mo R, Nagaoka M, Rodriguez H, et al. Regulatory agilities in the time of covid-19: overview, trends, and opportunities. Clin Ther. 2021;43(1):124–39. https://doi.org/10.1016/j.clinthera.2020.11.015
  112. Kana BD, Arbuthnot P, Botwe BK, Choonara YE, Hassan F, Louzir H, et al. Opportunities and challenges of leveraging COVID-19 vaccine innovation and technologies for developing sustainable vaccine manufacturing capabilities in Africa. Lancet Infect Dis. 2023; 23(8): e288-e300 https://doi.org/10.1016/S1473-3099(22)00878-7
  113. Kamenivskyy Y, Palisetti A, Hamze L, Saberi S. A blockchain-based solution for covid-19 vaccine distribution. IEEE Eng Manag Rev. 2022;50(1):43–53. https://doi.org/10.1109/EMR.2022.3145656
  114. Fiolet T, Kherabi Y, MacDonald CJ, Ghosn J, Peiffer-Smadja N. Comparing COVID-19 vaccines for their characteristics, efficacy and effectiveness against SARS-CoV-2 and variants of concern: a narrative review. Clin Microbiol Infect. 2022;28(2):202–21. https://doi.org/10.1016/j.cmi.2021.10.005
  115. Feikin DR, Higdon MM, Abu-Raddad LJ, Andrews N, Araos R, Goldberg Y, et al. Duration of effectiveness of vaccines against SARS-CoV-2 infection and COVID-19 disease: results of a systematic review and meta-regression. Lancet. 2022; 399(10328):924-44. https://doi.org/10.1016/S0140-6736(22)00152-0
  116. Follmann D, Janes HE, Buhule OD, Zhou H, Girard B, Marks K, et al. Antinucleocapsid antibodies after SARS-CoV-2 infection in the blinded phase of the randomized, placebo-controlled mRNA-1273 COVID-19 vaccine efficacy clinical trial. Ann Intern Med. 2022;175(9):1258–65. https://doi.org/10.7326/M22-1300
  117. Krause PR, Fleming TR, Longini IM, Peto R, Briand S, Heymann DL, et al. SARS-CoV-2 variants and vaccines. N Engl J Med. 2021;385(2):179–86. DOI: 10.1056/NEJMsr2105280
  118. Day D, Grech L, Nguyen M, Bain N, Kwok A, Harris S, et al. Serious underlying medical conditions and COVID-19 vaccine hesitancy: a large cross-sectional analysis from Australia. Vaccines. 2022;10(6):851. https://doi.org/10.3390/vaccines10060851
  119. Patel MK, Bergeri I, Bresee JS, Cowling BJ, Crowcroft NS, Fahmy K, et al. Evaluation of post-introduction COVID-19 vaccine effectiveness: Summary of interim guidance of the World Health Organization. Vaccine. 2021;39(30):4013–24. https://doi.org/10.1016/j.vaccine.2021.05.099
  120. Townsend JP, Hassler HB, Sah P, Galvani AP, Dornburg A. The durability of natural infection and vaccine-induced immunity against future infection by SARS-CoV-2. Proc Natl Acad Sci. 2022;119(31):e2204336119. https://doi.org/10.1073/pnas.2204336119
  121. Painter MM, Johnston TS, Lundgreen KA, Santos JJS, Qin JS, Goel RR, et al. Prior vaccination enhances immune responses during SARS-CoV-2 breakthrough infection with early activation of memory T cells followed by production of potent neutralizing antibodies. BioRxiv. 2023;2002–23. https://doi.org/10.1101/2023.02.05.527215
  122. DeGrace MM, Ghedin E, Frieman MB, Krammer F, Grifoni A, Alisoltani A, et al. Defining the risk of SARS-CoV-2 variants on immune protection. Nature. 2022;605(7911):640–52. https://doi.org/10.1038/s41586-022-04690-5
  123. Huang X, Kon E, Han X, Zhang X, Kong N, Mitchell MJ, et al. Nanotechnology-based strategies against SARS-CoV-2 variants. Nat Nanotechnol. 2022;17(10):1027–37. https://doi.org/10.1038/s41565-022-01174-5
  124. Siddiqui A, Adnan A, Abbas M, Taseen S, Ochani S, Essar MY. Revival of the heterologous prime‐boost technique in COVID‐19: An outlook from the history of outbreaks. Heal Sci reports. 2022;5(2):e531. https://doi.org/10.1002/hsr2.531
  125. Ura T, Takeuchi M, Kawagoe T, Mizuki N, Okuda K, Shimada M. Current Vaccine Platforms in Enhancing T-Cell Response. Vaccines. 2022;10(8):1367. https://doi.org/10.3390/vaccines10081367
  126. Rele S. COVID-19 vaccine development during pandemic: gap analysis, opportunities, and impact on future emerging infectious disease development strategies. Hum Vaccin Immunother. 2021;17(4):1122–7. https://doi.org/10.1080/21645515.2020.1822136
  127. van Riel D, de Wit E. Next-generation vaccine platforms for COVID-19. Nat Mater. 2020;19(8):810–2.
  128. Moss P. The T cell immune response against SARS-CoV-2. Nat Immunol. 2022;23(2):186–93. https://doi.org/10.1038/s41590-021-01122-w
  129. Ao D, Lan T, He X, Liu J, Chen L, Baptista‐Hon DT, et al. SARS‐CoV‐2 Omicron variant: Immune escape and vaccine development. MedComm. 2022;3(1):e126. https://doi.org/10.1002/mco2.126
  130. Chi WY, Li YD, Huang HC, Chan TEH, Chow SY, Su JH, et al. COVID-19 vaccine update: vaccine effectiveness, SARS-CoV-2 variants, boosters, adverse effects, and immune correlates of protection. J Biomed Sci. 2022;29(1):1–27. https://doi.org/10.1186/s12929-022-00853-8
  131. Hou Z, Tong Y, Du F, Lu L, Zhao S, Yu K, et al. Assessing COVID-19 vaccine hesitancy, confidence, and public engagement: a global social listening study. J Med Internet Res. 2021;23(6):e27632. https://doi.org/10.2196/27632
  132. Dixit S, Borghi-Silva A, Bairapareddy KC. Revisiting pulmonary rehabilitation during COVID-19 pandemic: a narrative review. Rev Cardiovasc Med. 2021;22(2):315–27. DOI: 10.31083/j.rcm2202039
  133. Chavez S, Long B, Koyfman A, Liang SY. Coronavirus Disease (COVID-19): A primer for emergency physicians. Am J Emerg Med. 2021;44:220–9. https://doi.org/10.1016/j.ajem.2020.03.036
  134. Ghosh I. Within host dynamics of SARS-CoV-2 in humans: Modeling immune responses and antiviral treatments. SN Comput Sci. 2021;2(6):482. https://doi.org/10.1007/s42979-021-00919-8
  135. Liang C, Tian L, Liu Y, Hui N, Qiao G, Li H, et al. A promising antiviral candidate drug for the COVID-19 pandemic: A mini-review of remdesivir. Eur J Med Chem. 2020;201:112527. https://doi.org/10.1016/j.ejmech.2020.112527
  136. Li G, Hilgenfeld R, Whitley R, De Clercq E. Therapeutic strategies for COVID-19: progress and lessons learned. Nat Rev Drug Discov. 2023;1–27. https://doi.org/10.1038/s41573-023-00672-y
  137. Bafna K, White K, Harish B, Rosales R, Ramelot TA, Acton TB, et al. Hepatitis C virus drugs that inhibit SARS-CoV-2 papain-like protease synergize with remdesivir to suppress viral replication in cell culture. Cell Rep. 2021;35(7):109133. https://doi.org/10.1016/j.celrep.2021.109133
  138. Sen S, Singh B, Biswas G. Corticosteroids: A boon or bane for COVID-19 patients? Steroids. 2022;109102. https://doi.org/10.1016/j.steroids.2022.109102
  139. Magro G. SARS-CoV-2 and COVID-19: Is interleukin-6 (IL-6) the ‘culprit lesion’of ARDS onset? What is there besides Tocilizumab? SGP130Fc. Cytokine X. 2020;2(2):100029. https://doi.org/10.1016/j.cytox.2020.100029
  140. Arnaldez FI, O’Day SJ, Drake CG, Fox BA, Fu B, Urba WJ, et al. The Society for Immunotherapy of Cancer perspective on regulation of interleukin-6 signaling in COVID-19-related systemic inflammatory response. J Immunother cancer. 2020;8(1). https://doi.org/10.1136/jitc-2020-000930
  141. Akbarzadeh-Khiavi M, Torabi M, Rahbarnia L, Safary A. Baricitinib combination therapy: a narrative review of repurposed Janus kinase inhibitor against severe SARS-CoV-2 infection. Infection. 2021;1–14. https://doi.org/10.1007/s15010-021-01730-6
  142. Taylor PC, Adams AC, Hufford MM, De La Torre I, Winthrop K, Gottlieb RL. Neutralizing monoclonal antibodies for treatment of COVID-19. Nat Rev Immunol. 2021;21(6):382–93. https://doi.org/10.1038/s41577-021-00542-x
  143. Tao K, Tzou PL, Kosakovsky Pond SL, Ioannidis JPA, Shafer RW. Susceptibility of SARS-CoV-2 Omicron variants to therapeutic monoclonal antibodies: systematic review and meta-analysis. Microbiol Spectr. 2022;10(4):e00926-22. https://doi.org/10.1128/spectrum.00926-22
  144. O’Toole R V, Stein DM, Frey KP, O’Hara NN, Scharfstein DO, Slobogean GP, et al. PREVENTion of CLots in Orthopaedic Trauma (PREVENT CLOT): a randomised pragmatic trial protocol comparing aspirin versus low-molecular-weight heparin for blood clot prevention in orthopaedic trauma patients. BMJ Open. 2021;11(3):e041845. doi:10.1136/ bmjopen-2020-041845
  145. Jandrić P, Hayes D, Truelove I, Levinson P, Mayo P, Ryberg T, et al. Teaching in the age of Covid-19. Postdigital Sci Educ. 2020;2(3):1069–230. https://doi.org/10.1007/s42438-020-00169-6
  146. Djalante R, Lassa J, Setiamarga D, Sudjatma A, Indrawan M, Haryanto B, et al. Review and analysis of current responses to COVID-19 in Indonesia: Period of January to March 2020. Prog Disaster Sci. 2020;6:100091. https://doi.org/10.1016/j.pdisas.2020.100091
  147. Elwakil B, Shaaban MM, Bekhit AA, El-Naggar MY, Olama ZA. Potential anti-COVID-19 activity of Egyptian propolis using computational modeling. Future Virol. 2021;16(2):107–16. https://doi.org/10.2217/fvl-2020-0329
  148. Silveira MAD, De Jong D, dos Santos Galvão EB, Ribeiro JC, Silva TC, Berretta AA, et al. Efficacy of propolis as an adjunct treatment for hospitalized COVID-19 patients: a randomized, controlled clinical trial. medRxiv. 2021; https://doi.org/10.1016/j.biopha.2021.111526
  149. Gavriatopoulou M, Korompoki E, Fotiou D, Ntanasis-Stathopoulos I, Psaltopoulou T, Kastritis E, et al. Organ-specific manifestations of COVID-19 infection. Clin Exp Med. 2020;1–14. https://doi.org/10.1007/s10238-020-00648-x
  150. Deshmukh V, Motwani R, Kumar A, Kumari C, Raza K. Histopathological observations in COVID-19: a systematic review. J Clin Pathol. 2021;74(2):76–83. https://doi.org/10.1136/jclinpath-2020-206995
  151. Becker RC. COVID-19 update: Covid-19-associated coagulopathy. J Thromb Thrombolysis. 2020;50:54–67. https://doi.org/10.1007/s11239-020-02134-3
  152. Raza MA, Aziz S, Shahzad S, Raza SM. Post-COVID Recovery Assessment Clinics: A Real Need of Time. Inov Pharm. 2021;12(1):7. https://doi.org/10.24926/iip.v12i1.3693
  153. Akter F, Mannan A, Mehedi HMH, Rob MA, Ahmed S, Salauddin A, et al. Clinical characteristics and short term outcomes after recovery from COVID-19 in patients with and without diabetes in Bangladesh. Diabetes Metab Syndr Clin Res Rev. 2020;14(6):2031–8. https://doi.org/10.1016/j.dsx.2020.10.016
  154. Huang C, Huang L, Wang Y, Li X, Ren L, Gu X, et al. 6-month consequences of COVID-19 in patients discharged from hospital: a cohort study. Lancet. 2021; 401(10393): e21-e33 https://doi.org/10.1016/S0140-6736(23)00810-3
  155. Lenzen M, Li M, Malik A, Pomponi F, Sun YY, Wiedmann T, et al. Global socio-economic losses and environmental gains from the Coronavirus pandemic. PLoS One. 2020;15(7):e0235654. https://doi.org/10.1371/journal.pone.0235654
  156. Dutta V, Kumar S, Dubey D. Recent advances in satellite mapping of global air quality: evidences during COVID-19 pandemic. Environmental Sustainability. 2021;4(3):469-87. https://doi.org/10.1007/s42398-021-00166-w
  157. Bhat SA, Bashir O, Bilal M, Ishaq A, Dar MUD, Kumar R, et al. Impact of COVID-related lockdowns on environmental and climate change scenarios. Environ Res. 2021;195:110839. https://doi.org/10.1016/j.envres.2021.110839
  158. Chakraborty C, Roy S, Sharma S, Tran T, Chauhan A. COVID-19: Disaster or an Opportunity for Environmental Sustainability. Impact COVID-19 Pandemic Green Soc Sustain. 2021;169–93.
  159. Han P, Cai Q, Oda T, Zeng N, Shan Y, Lin X, et al. Assessing the recent impact of COVID-19 on carbon emissions from China using domestic economic data. Sci Total Environ. 2021;750:141688. https://doi.org/10.1016/j.scitotenv.2020.141688
  160. Le Quéré C, Jackson RB, Jones MW, Smith AJP, Abernethy S, Andrew RM, et al. Temporary reduction in daily global CO 2 emissions during the COVID-19 forced confinement. Nat Clim Chang. 2020;10(7):647–53. https://doi.org/10.1038/s41558-020-0797-x
  161. Vanapalli KR, Sharma HB, Ranjan VP, Samal B, Bhattacharya J, Dubey BK, et al. Challenges and strategies for effective plastic waste management during and post COVID-19 pandemic. Sci Total Environ. 2021;750:141514. https://doi.org/10.1016/j.scitotenv.2020.141514
  162. Mendonça SA, Lorincz R, Boucher P, Curiel DT. Adenoviral vector vaccine platforms in the SARS-CoV-2 pandemic. npj Vaccines. 2021;6(1):97. https://doi.org/10.1038/s41541-021-00356-x
  163. Vyas J, Kadam A, Mashru R. The role of herd immunity in control of contagious diseases. Int J Res Rev. 2020;7(7):108–19. Website: www.ijrrjournal.com
  164. Tregoning JS, Flight KE, Higham SL, Wang Z, Pierce BF. Progress of the COVID-19 vaccine effort: viruses, vaccines and variants versus efficacy, effectiveness and escape. Nat Rev Immunol. 2021;21(10):626–36. https://clinicaltrials.gov/
  165. Šehović AB, Govender K. Addressing COVID-19 vulnerabilities: how do we achieve global health security in an inequitable world. Glob Public Health. 2021;16(8–9):1198–208. https://doi.org/10.1080/17441692.2021.1916056
  166. National Academies of Sciences and Medicine E. Framework for equitable allocation of COVID-19 vaccine. National Academies Press; 2020.
  167. Cross KM, Landis DM, Sehgal L, Payne JD. Melatonin for the early treatment of COVID-19: a narrative review of current evidence and possible efficacy. Endocr Pract. 2021;27(8):850–5. https://doi.org/10.1016/j.eprac.2021.06.001
  168. Asselah T, Durantel D, Pasmant E, Lau G, Schinazi RF. COVID-19: Discovery, diagnostics and drug development. J Hepatol. 2021;74(1):168–84. https://doi.org/10.1016/j.jhep.2020.09.031
  169. Nicola M, O’Neill N, Sohrabi C, Khan M, Agha M, Agha R. Evidence based management guideline for the COVID-19 pandemic-Review article. Int J Surg. 2020;77:206–16. https://doi.org/10.1016/j.ijsu.2020.04.001
  170. Meganck RM, Baric RS. Developing therapeutic approaches for twenty-first-century emerging infectious viral diseases. Nat Med. 2021;27(3):401–10. https://doi.org/10.1038/s41591-021-01282-0
  171. Adamson CS, Chibale K, Goss RJM, Jaspars M, Newman DJ, Dorrington RA. Antiviral drug discovery: preparing for the next pandemic. Chem Soc Rev. 2021;50(6):3647–55. https://doi.org/10.1039/D0CS01118E
  172. Daszak P, Keusch GT, Phelan AL, Johnson CK, Osterholm MT. Infectious Disease Threats: A Rebound to Resilience: Commentary reviews the US approach to pandemic preparedness, its impact on the response to COVID-19, and offers policy options to strengthen US pandemic resilience. Health Aff. 2021;40(2):204–11. https://doi.org/10.1377/hlthaff.2020.01544
  173. Vehar S, Boushra M, Ntiamoah P, Biehl M. Post-acute sequelae of SARS-CoV-2 infection: Caring for the ‘long-haulers.’ Cleve Clin J Med. 2021;88(5):267–72. DOI: https://doi.org/10.3949/ccjm.88a.21010-up
  174. Haque A, Pant AB. Long Covid: Untangling the Complex Syndrome and the Search for Therapeutics. Viruses. 2022;15(1):42. https://doi.org/10.3390/v15010042
  175. Crook H, Raza S, Nowell J, Young M, Edison P. Long covid—mechanisms, risk factors, and management. bmj. 2021;374. https://doi.org/10.1136/bmj.n1648
  176. O’Brien H, Tracey MJ, Ottewill C, O’Brien ME, Morgan RK, Costello RW, et al. An integrated multidisciplinary model of COVID-19 recovery care. Irish J Med Sci. 2021;190:461–8. https://doi.org/10.1007/s11845-020-02354-9
  177. Hampshire A, Chatfield DA, Jolly A, Trender W, Hellyer PJ, Del Giovane M, et al. Multivariate profile and acute-phase correlates of cognitive deficits in a COVID-19 hospitalised cohort. EClinicalMedicine. 2022;47:101417. https://doi.org/10.1016/j.eclinm.2022.101417
  178. Araja D, Berkis U, Murovska M. COVID-19 pandemic-revealed consistencies and inconsistencies in healthcare: A medical and organizational view. In: Healthcare. MDPI; 2022. p. 1018. https://doi.org/10.3390/healthcare10061018
  179. Khalili H, Lising D, Kolcu G, Thistlethwaite J, Gilbert J, Langlois S, et al. Advancing health care resilience through a systems-based collaborative approach: Lessons learned from COVID-19. Vol. 35, Journal of interprofessional care. Taylor & Francis; 2021. p. 809–12. https://doi.org/10.1080/13561820.2021.1981265
  180. Sodhi MS, Tang CS, Willenson ET. Research opportunities in preparing supply chains of essential goods for future pandemics. Int J Prod Res. 2021;1–16. https://doi.org/10.1080/00207543.2021.1884310
  181. Wilkinson A, Ali H, Bedford J, Boonyabancha S, Connolly C, Conteh A, et al. Local response in health emergencies: key considerations for addressing the COVID-19 pandemic in informal urban settlements. Environ Urban. 2020; 32(2): 503- 522. https://doi.org/10.1177/0956247820922843
  182. Sharma A, Gupta P, Jha R. COVID-19: Impact on health supply chain and lessons to be learnt. J Health Manag. 2020;22(2):248–61. https://doi.org/10.1177/0972063420935653
  183. Yu J, Park J, Hyun SS. Impacts of the COVID-19 pandemic on employees’ work stress, well-being, mental health, organizational citizenship behavior, and employee-customer identification. J Hosp Mark Manag. 2021;30(5):529–48. https://doi.org/10.1080/19368623.2021.1867283
  184. Pietromonaco PR, Overall NC. Applying relationship science to evaluate how the COVID-19 pandemic may impact couples’ relationships. Am Psychol. 2021; ;76(3):438-450. https://doi.org/10.1037/amp0000714
  185. Silveira S, Hecht M, Matthaeus H, Adli M, Voelkle MC, Singer T. Coping with the COVID-19 pandemic: perceived changes in psychological vulnerability, resilience and social cohesion before, during and after lockdown. Int J Environ Res Public Health. 2022;19(6):3290. https://doi.org/10.3390/ijerph19063290
  186. Javed A, Lee C, Zakaria H, Buenaventura RD, Cetkovich-Bakmas M, Duailibi K, et al. Reducing the stigma of mental health disorders with a focus on low-and middle-income countries. Asian J Psychiatr. 2021;58:102601. https://doi.org/10.1016/j.ajp.2021.102601
  187. Hill-Briggs F, Adler NE, Berkowitz SA, Chin MH, Gary-Webb TL, Navas-Acien A, et al. Social determinants of health and diabetes: a scientific review. Diabetes Care. 2021;44(1):258–79. https://doi.org/10.2337/dci20-0053
  188. Alcaraz KI, Wiedt TL, Daniels EC, Yabroff KR, Guerra CE, Wender RC. Understanding and addressing social determinants to advance cancer health equity in the United States: a blueprint for practice, research, and policy. CA Cancer J Clin. 2020;70(1):31–46. https://doi.org/10.3322/caac.21586


How to Cite

1.
Hassan A, K El-Adham E. The penetration, possibility of protection and treatment of COVID-19. J Ideas Health [Internet]. 2024 Dec. 31 [cited 2025 Jan. 15];7(6):1199-220. Available from: https://jidhealth.com/index.php/jidhealth/article/view/388